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Limitations of Monitoring Wells for the
Detection and Quantification of
Petroleum Products in Soils and Aquifers

by Abdul S. Abdul, Sheila F. Kia, and Thomas L. Gibson

Abstract

Theoretical analysis and laboratory column expenments were carned out to investigate the conditions required 1or
petroleum products (o1l) to flow into a well installed through a sandy porous medium contaminated with the oil. The
results indicated that oil would flow into a well only after a laver of “free 0il™ is formed in the adjacent porous medium
Because significant quantities of oil could be stored in the porous medium under the influence of capillary suction prior
to the formation of the zone of free oil, the presence of oil in a well would indicate an advanced stage of o1} contamination
of the subsurface. While monitoring wells could be used to delineate the extent of the free-oil plume and the plume of
dissolved petroleum constituents, they are not useful for delineating the extent of capillary held m}

The experimental results also indicated that the ratio of the oil-laver thickness in the well to that n the porous
medium i not a constant as 1s sometimes assumed 1n practice. Further, estimates of the oil thickness in the medium based
on the oil thickness in wells and on capillary properties measured in the laboratory were sensitive to the values of the
parameters used 1n these estimates. The measured thickness of the otl laver in a monitoring well alone mav not vield
rehiable estimates of the amount of oil in the subsurface, and assuming that the oil-thickness ratio is a constant can lead to

inadequate site assessments and inappropnate remedial plans

Introduction

Petroleum products, hereafter referred to as “oil,”
such as gasoline. diesel fuel, kerosene transmission fluid.
and lubricating oils, are commonly stored in underground
storage tanks (USTs). It 1s widely known that USTs can
develop leaks as a result of matenal failure or negligence
Such leaks are not only a costly loss of the petroleum
product, but an environmental concern. In view of this. it
1s generally agreed that methods for the eariy detection of
leaks and for the dehneation of zones of contamination
are needed. because they can serve to limit the adverse
effects of products leaked from USTs

Monntoring wells have proven to be verv useful tor
detecting the presence of agueous phase contaminants
migrating from waste sites such as landfills and surtace
impoundments Thus, 1t 1s not surprising that monitoring
wells are frequently used tor detecung feaks trom USTs
and for delincating the plumes of orf resulting trom such
leaks. Monitonng wells are useful for delineating the
region of the aguifer contaminated with dissobved con-
stituents of petroleum products: however, the appropri-
ateness of monnoring wells to detect the presence and
delineate the extent of undissolved petroleum productsin
soll and aquifer svstems is guestionable These concerns
are mvestigated n this studs
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Theoretical Background
Detection and Delineation

A schematic of a cross section of the unsaturated-
saturated subsurface zones. under conditions in which
the water table 15 at such a depth below the ground that
the surface soil has drained to residual saturation. i
shown in Figure t. Essentiallv. this figure tllustrates the
relationship between the degree of saturation and the
fluid pressure above the water table. By this relationship.
the fluid pressure (gauge) becomes more negatine with
height above the water table. where the fluid pressure s
rero. Further. the degree of saturation s approximateiy
constant in the capillany fringe calmost 100 percent satu-
ration) and in the pendular sone fresideal saturadion).
and it decreases with height anove the water table in the
tunicular 7one

Fluids in the capillary tringe and tunicuiar zone are
held mainly by capillary forces and are. therefore, said te
be under suction Consider a capillars pore in a porous
medium. The camliary pressure (p ) that exists at the
interface between two flwds in the pore i« the difference
between the pressures in the non-wetting (p 1 and wetting
(p, ) fluidstEquation | [Cores 1977]) The capillary pres-
sure can also be described by Fouation 2. while the fluid

pressure head (¢ can be described t
1977
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Based on principles of fluid mechanics, tiuid would
flow from sones of higher (or less negative) values of ¥ to
sones of lower values of ¢ along the same honzontal
pane. Momtoring wells are usually several inches in
Jduameter. thus. ey do notexert capillary forces. There-
teres the regron above the hquid level in a well will be
tilled with air tzero-pressur - head). In contrast, the pen-
duar. tunicular, and capiilary fringe 7ones in contact
with the air-filled portion ot the well screen are made up
ot 4 network of capillartes and water or ol 1n these
capuilaries will be under negative-pressure head. Liquids
irom these 7ones being under negative-pressure head are
not expected to flow from the porous medium into the
weil, If the well 1y installed below the water table or
thraugh a zone ot free od, where the pressure head of the
hyuid 15 greater than atmosphenc pressure, liguid would
flow 1nto the well until, if there is no vertical hydraulic
gradient, the liquid level in the well would rise to the same
level as that (n the porous medium.

Based on the concepts in Figure | and principles of
fluid mechanics { Dullien 1979) the vertical profiles of o1l
saturation and pressure can be sketched for different
stages of an oil-leak event. Figure 2 shows such profiles
for three stages during an oil-leak event in a uniform
sandy medium. In these examples, the rate of oil leak
tvolume area)is smaller than the saturated o1l hydraulic
conductivity of the medium. ’

Figure 2a shows three stages of an oil leak. Stage 1
shows conditions soon after a leak started, when the oil is
distnibuted only in the pendular and funicular zones. Oil
spreading in these zones wall be both lateral and downward
under the nfluence of capillary and gravity forces.
respectively (Corey 1977). In Stage 2. oil has migrated
into the water capillary fringe and an oil capillary fringe
has developed, but free oil is not present. The lateral
spread of the o1l1n the water capillary fringe zone is in the
direction of ground water flow. Stage 3 represents an
advanced stage of the oil leak. when an “o1l table” has
developed. The actual position of the oil table will depend
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Figure 1. Schematic of the unsaturated and saturated subsurface
rones.

on the rate of leak. the quanuty of o1l the properties o1
the aul. and the properties of the hyvdrogealogie material.
Figure 2b shows the degree of saturation protiles of
arl along a vertical line through each of the three stages
Betore the oii leak. the medium was variably saturated
with water. with the degree of water saturation inereasing
with depth through the tunicular zone In Stage | soon
after the leak starts. the o1l saturation is expected to be
greatest near the leak and to decrease with depth into the
medium below the leak. In Stage 2. ol has started to
accumulate within the water capillary fringe because the
oil head is not large enough to further displace the pore
water downward (Equation 2). At this stage of the leak.
an extensive region of the subsurface could become con-
taminated and a large volume of o1l could be stored as
residual and capillarv-held oil within the medium. How-
ever, because the oil pressure 5 sull negative, the oil
should not flow into a well. [n Stage 3, the region ot ol
saturation has increased to torm a zone of “free m}. " This
free oil will be at a higher pressure than atmospheric and
could flow into a well open to the zone of free oil.

Figure 2c shows the expected vertical oil-pressure
distributions for the three stages of an oil leak. The
oll-pressure distribution follows that of the degree of
saturation, by which the values of pressure head decrease
downward from the source during Stage | and the trend
reverses for Stages 2 and 3. The oil-pressure head during
Stages 1 and 2 is negative (befow atmosphenic pressure).
while it is positive in the zone of free oil, which develops
durning Stage 3. As discussed previously, flmd would only
flow from high to low pressure head along the same
horizontal plane. Therefore, oil in the pendular. funicular,
and capillary fnnge zones being under negative pressure.
would not flow directly into a well.

Based on this theoretical analvsis, considerable o1l
contamination can occur without o1l flowing into wells.
A main task 1n this study was to carry out experiments to
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test the adequacy of these theoretical predictions. The
results of these experiments will be presented in subsequent
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Quantification of Qil by Monitoring Wells
It has been previously shown (CONCAWY 1979, Zil-
lilox and Muntzer 1975) that. under hvdrostate conditions

Weli
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Figure 3. 0i] distribution in 2 well and contiguous hydrogeologic
system.
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Figure 4. Water content-pressure bead cives for 125 10 250 ym
sand, showing the capillary fringe (CF).

the ratio of the thickness of the o1l column in a well to that
in the porous medium is a constant for a given oil and
porous medium. This finding can be developed tfrom
Figure 3, which shows a monitonng well placed through
an oil-contaminated porous medium. In this figure, h,
represents the thickness of the oil capillary fringe, h,, the
thickness of the oil column in the well below the base of
the free oil in the medium, and b the thickness of the
free-o1l zone in the porous medium. From Equation 3
and for a situation where h; is very small, the following
equations can be developed:

ho- o PE
(B, -Pa) 8 (4)
(5)
(6)

respectively. :

By Equation 6, as the specific gravity of oil increases,
its thickness in a monitoring well would increase with
respect to that in the porous medium. For a specific
gravity of 0.8 and assuming that pt°= pZ*, the thickness
of the oil layer in the well would be four times that in the
medium. For this reason, it is sometimes assumed that
the oil-thickness ratio is a constant value of four. However,
this value of otl-thickness ratio may be in error during the
leaking of a tank, when the value of h; is not zero.

Knowledge of the value of h is very important when
planning remedial schemes because it represents the
volume of oil that can be readily removed from the
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Figure 5. Diesel fuel content-pressure bead curves for 125 to
258 uma sand, showing the capillary fringe (CF).

porous medium. However, estimating the value of h;
continues to be a scientific challenge (as discussed in the
Results section). In addition, as the value of h increases,
the oil thickness ratio[(h,, + h); (h_+ hg)] would decrease.
Therefore, the oil in the soil/ aquifer system can be under-
estimated if it is assumed that the oil-thickness ratio is a
constant value of four. Again, these theoretical predictions
will be compared with experimental findings in a subse-
quent section.

Experimental
Materials

The sand material used as the geologic medium in the
experiments was from the water-table region of a sandy
aquifer at Borden, Ontario, Canada (Abdul and Gibson
1986). The sand was first air dried and then the 12510 250
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4m (0.0049 to 0.0098-inch) grain-size range was separated.
using a mechanical shaker, for use in the expenments.

Several fluids, including gasoline, kerosene, diesel
fuel, transmission oil, and lubricating oils are lighter than
and immuscible with water, and are of interest because
they all are stored in large quantities in USTs. Diesel fuel
(hereafter referred to as oil) was used in this study as a
representative of the other fluids because it is less flam-
mable than gasoline and kerosene, and therefore safer to
work with. Diesel fuel also has a moderate viscosity.
which helps to minimize the duration of the experiment.

The water content-pressure head (#(),} and oil
content-pressure head (&¢),) relationships for the sand
were determined by the hanging water column method
{Abdul and Gillham 1984, Day et al. 1967). The results
from these funnel expennments are shown in Figures 4 and
S, respectively.

Column

The acrylic column used in the experiment was
113.5cm (44.69 inch) high by 10.8cm (4.25 1nch) in diameter
and was fitted at the base with a stainless steel screen and
an adjustable outflow tube (Figure 6). Seven tensiometers,
T1 through T7, were fitted through the wall of the column
to penetrate about [cm into the sand. Each tensiometer
had a fluid chamber and two ports a measuring port
connected to a manometer and a port for flushing
entrapped air from the monitoring system. The fluid
chamber was separated from the sand by an 80 um
(0.0031 inch) nvlon membrane. This membrane size was
selected because 1t remained saturated with either o1l or
water under the range of suction in the experiment, and
also because it allowed for the displacement of water by
oil as the o1l pressure head became positive. The monitor-
ing well (a semicvlindrical 2.5cm (0.98 inch) 1.D. acrylic
tube) was attached by epoxy to the outside of the length
of the sand column. The wall between the well and the
column was perforated with 0.6cm (0.24 inch) diameter
holes and was screened from the sand medium with 125
pm (0.0049 inch) stainless-steel mesh. The column was
siowly packed by pouring a continuous thin stream of
sand through a funnel to achieve a uniform porous
medium. The column was then tapped on the sides to
compact the sand to the same bulk density (=1690 kg m*:
105.5 1b ft*) as that in the funnel experiments. After
packing. the sand was slowly wetted from below untl
water ponded on the surface

Experiments

In preparation tor an expeniment. the outflow tube
(Figure 6) was positioned at the elevation ot the desired
inttial water table and was then opened to dran the
svstem until equilibnum was reached Subaequently. o
slugs of S0cc (3.05 cu. inch) were added to the center of
the top of the sand column at 24-hour imtervals This ume
intervai was found to be sufficient for the system to reach
equilibrium At the end of each interval. the manometers
tat T1 through T7) were momitored and the vertical
distributions of oil 1n the column and in the well were
measured Toimprove the visual contrast between the o1l
and water in the sand medium. a few drops of a dyve
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Figure 6. Schematic showing a cross section through the column,
monitoring well, and tensiometer-manometer monitoring system.

(Ethyl Corp., Baton Rouge. louisiana an oil-soluble
anthraquinone dye in an aromatic solvent) were added to
the oil. All experiments were carried out under rising
water-table conditions. In these expenments. the outflow
tube was closed as the oil-water interface approached the
top of the water capillary fringe. Under this condition.
the water table and capillary fringe response to the infii-
trating oil could cause the water table to nse (Abdv!
1987). Experiments under falling water-tabie conditions.
which would require drainage of displaced water from
the column. were not conducted because. with the outflow
tube at the base of the column opened. o1l would prefer-
entially flow through the column rather than to the well.
In addition, it is not believed that such experiments
would add anv new insight to the problem (see Abdu:
1987).

Results and Discussion

Five sets of results for critical stages dunng a nising
water-table experiment are shown in Figures Ta through
7e. Each figure shows the well and contiguous sand
medium, the o1l and water distributions in the well and
sand medium, and the vertical pressure head profile
through the oil and water. To show the fluid distnbution
through the column. a unit vertical section 1s considered
and the o1l and water capillary fringes and the tree-oil
zone are represented by the hatched regions of thisverticai
section. Below the hatched region the medium i saturatee
with water. while above this region the mediun 1s unsatu-
rated with either water or oil. The measured values of
pressure head are shown as ciosed circies connected by
straight hines

Figure 7a shows the veruical profile of the pore-water
pressure. as measured at tenstometers T1 through 17,
before o1l was added to the top of the sand column The
bubbling pressure of the porous membrane ot T1 was
esceeded during the experiment and wr entered the

Heght Abiva Base of Colme iem)

Figure 7a. Vertical profile of the pore-water
before addition of oil.
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manometer line; therefore, T1 was not monitored. As
expected, the results show that the pressure of the pore
water increased linearly with depth below the surface of
the sand (Figure 7a), indicating that the pore water was
under hydrostatic conditions prior to the addition of oil.
The visual thickness of the water capillary fringe in the
sand column was 23cm (9.06 inch), which compares with
a thickness of 33cm (12.99 inch) measured in the funnel
experiments ( Figure 4). This difference in the thickness of
the capillary fringe is likely caused by small differences
between the pore-size distribution in the funnel and
column.

Figure 7b shows the conditions in the column when
the oil capillary fringe was fully developed and oil began
to flow into the well. During the development of the
fringe, no oil flowed into the well. Only after the devel-
opment of a saturated otl fringe did the excess oil start to
drain into the well. At this stage of the experiment, the
volume of excess oll was smaller than that needed to
cause the oil in the well to rise to the level of the base of
the oil capillary fringe in the medium. Under this condi-
tion, no free-oil layer existed in the medium (h, = 0). As
more o1l was added, the excess oil in the medium drained
into the well causing the oil/ air interface in the well to rise
to the level of the base of the oil capillary fringe in the
medium and forcing the oil-water interface in the well to
fall (Figure 7c). At this stage, a thin layer of free oil
accumulated in the medium. Further addition of oil caused
the o1l. air interface and oil: water interface in the well to
nise and fall, respectively. The thickness of the free-oil

ayer increased and the water table rose as a result of the
w~ater capillary fringe decreasing in thickness {Figures 7d
and 7e). Because the response of the water capillary fringe
will determine the final position of the water table, a
detailed treatment of its response is described elsewhere
in this paper.

The vertical distnbution of the hydrostatic pressure
through the oil in the sand column and in the well and the
hydrostatic pressure through the water in the sand column

can be described by two straight lines (Figures 7c to 7e).
The pressures of the oil and water in the medium at the
plane passing through the oil-water interface in the well
are equal, indicating that the pressure exerted by the oil
column in the well is balanced by the pressure of the
water column in the contiguous porous medium. Above
this plane, the two pressure lines (one for water and the
other for oil) diverge such that the pressure in the oil is
always higher than that in the water. The maximum
difference between the oil and water pressures is reached
at the elevation of the oil-water interface in the porous
medium. This is the pressure that the oil must exceed
relative to that of water to displace water from the satu-
rated pores of the sand.

The results in Figure 7 also show that the visual
observations are in excellent agreenagat with the measured
hydrostatic pressure-head distributions. The intersection
of the oil-pressure line and the vertical zero-pressure line
(the oil table) is at the same height above the base of the
column as the observed top of the oil column in the well.
In addition, the pressure of the column of water between
the measured water-table position and the oil-water
interface in the well matches the pressure of the visually
observed oil coiumn in the well. Some of the results in
Figure 7 are summarized in Table | for further discussion
Oil-Thickness Ratio

The oil-thickness ratio (R) is defined here as the ratio
of the o1l thickness in the well (H_,) to that in the adjacent
porous medium (H ). Recall that H_ is the sum of the
height of the oil capillary fringe (h. = 16cm [6.30 inch] in
the column; 23cm[9.06 in~h] in funnel) and the thickness
of the free-oil zone (hy), while H _,, is the sum of h; and the
thickness of oil in the well below the base of oil in the
porous medium (h,) (Figure 3).

The experimental results demonstrated that oil would
enter a well only after a zone of free product {oil pressure
above atmospheric pressure) starts to develop (Figure
7b). Just prior to the development of the zone of free
product, the value of H,  was equivalent to the thickness

TABLE 1
Summary of Experimental Results
(h, + hy) (h.+ hy WCF pre H,
Figure (cm) (cm) R (cm) (cm H,0) (cm)
7B 6 16 0.4 17
7C 63 1 37 9 9 !
D 6k 19 3.6 6.5 9 S 3
¥ 73 23 32 2 -
7E 84 29 29 0 11.5 12
(h, +hy = thickness of oil in the well.
(h, + hy = thickness of oil in the porous medium.
WCF = thickness of the water capillary fringe.
p* = pressure difference across the oil-water surface.
h, = thickness of free product in the porous medium
R = (h, -h) (k ~hy
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of the o1l capillary fringe, while the value of H | was zero.
Asthe zone of free product developed and o1l entered the
well. the oil thickness ratio increased trom zero to a value
of 3.6 (Figure 7d), while the value of h; remained quite
small (Table 1). Subsequently, as h; increased to 3cm
(5.12 inch), the value of R decreased to 2.9 (Figure 7e).
During the experiment, the thickness of the o1l capillary
fringe remained constant; therefore. the decrease in the
values of R resulted from the corresponding increase in
the values of hy. These results clearly demonstrate that the
oil-thickness ratio, for the same medium and oil, 1s not a
constant but that 1t first increases to a maximum value
and then decreases as the thickness of free oil increases
from zero.

Based on these results. estimates of the oil thickness in
the porous medium from the measured thickness of the
oil column in a monitoring well under the assumption
that the value of R is constant may be in error. The
greatest challenge in estimating the value of R is in locating
the oil-water interface in the porous medium. Under
hydrostatic conditions, this interface is located at the
elevation at which the pressure difference between the
oil-and water-pressure lines is equal to the wterfacial
pressure between oil and water (Equation 2). In an effort
to find a simple procedure to give reasonable estimates of
R we will: (1) use the measure.nents in the monitoring
well for an advanced stage dunng the experiment { Figure
%) to construct the oil and water pressure lines; (2) calculate.
for hvdrostatic conditions, the capillary pressure at the
ol-water interface using results of simple laboratory funnel
experiments and Fquation 2; and (3) find the elevation of

this pressure difference between the oil- and water-pressure
anes. The agreement between the calculated and observed
thickness of the oil in the sand column will be assessed.

Because the volume of the monnonng well (in the
laboratory experiment and also 1n field applications) s
very small, the top of the oil column in the well was at the
same elevation as the base of the o1l capillary fringe in the
adjacent porous medium (point A, Figure 8). Tinder
hydrostatic conditions, the oil pressure at the oil-water
interface in the well would be equal to the pore-water
pressure in the adjacent porous medium (point B, Figure
8). A straight line through the points A and B, which were
located from observation in the monitoring wells (mea-
surements in field applications) describes the hydrostatic
pressure profile for the oil in the contiguous porous
medium and well. Further, the position of the water table
in the porous medium is determined by the water head
that is required to support the column of o1l tn the well.
and 1s the product of the measured oil thickness in the
well and the ratio of the densities of o1l and water (point
C, Figure 8). The equilibrium pressure profiles calculated
from the measurements made in the monitoring well are
shown by broken lines in Figure 8, while the pressure
profiles determined from the manometers are indicated
by solid lines. Next we will locate the oil-water interface
in the porous medium and compare the calculated position
with that observed expenmentally.

Under hydrostatic conditions the pressure head in the
otl would be such that o1l cannot displace water and the
pressure across the oil-water interface in the porous
medium can be calculated by using Equation 3 Using the
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heights of the oil- and water-capillary fringe (h,), measured
in the funnel and column experiments, two values for p¥2
and for p2 were calculated.

These values, with corresponding values of surface
tension for air-water and air-oil (=75 dynes/cm {0.014
poundals’inch] and =32 dynes; cm [0.059 poundals; inch],
respectively), and a contact angle of zero were used with
Equation 2 to calculate four values of r g (0.0069, 0.0049,
0.0048, and 0.0046cm [0.0027,0.0019,0.0019, and 0.0018
inch]) for the column sand. The mean value of r is
0.0053cm (0.0021 inch). Further, for this value of mean
T, @ mean labnratory-measured value for the interfacial
tension between oil and water of 15.5 dynes/cm (0.0028
poundals:inch), and cos 8= 1, Equation 2 gives a value of
p¥e of 6.0cm water (2.36 inch). By this calculation the
base of the oil zone in the porous medium should be the
elevation at which the pressure difference between the oil
pressure line (BA) and the water pressure line (BC) is
6.0cm (2.36 inch). This corresponds to elevation E in
Figure 8. The observed position of the oil-water interface
in the column experiment corresponds to a value of p*©
of 9cm (3.54 inch) water (position F in Figure 8). The
difference in elevations at E and F represents a difference
of 30cm (11.81 inch) oil. Based on this calculation, the
thickness of the zone of free oil in the sand is 37cm (14.57
inch) compared to the observed thickness of 7cm (2.76
inch). This difference is of practical significance because a
free-oil-zone thickness of a few centimeters represents a
large volume of oil if the lateral spread is large.

The values of p*© for the several stages of the exper-
iment are included in Table 1 and they range from 9.0 to
t1.5 (cm water). Because the value p*© used in the preced-
ing calculations 1s 9.0 (cm water), the foregoing analysis is
applicable to all the results of this study. This analysis
demonstrates that even in the wellcontrolled expenment
with an adequately charactenzed sand column, the calcu-
lated position of the oil-water interface in the porous
medium can be significantly different from the actual
position of this interface. At field sites, where locating the
interface currently relies on measurements in monitoring
wells, predictions of the value of R can be expected 10 be
much more uncertain due to a dynamic flow system and
spatial variability of the hydrogeologic parameters.

A simple and direct method for measuring the mean
height of the oil- and water—apillary fringe (Abdul and
Giltham 19%4) gave results that show some dependence
on the stze of the laboratory device. In the column, the
volume of sand was about &5 times that in the funnel cell.
and the vertical extents for the on- and water<capillary
fringes were 16 and 23c¢m 16 30 and 9.06 inch). while in
the funnel they increased to 1X and 33cm (7.09 and 12.99
inchy), respectively . This difference in the vertical extent of
the capillary fringe 1s likely caused by small differences in
the values of bulk density in the funnel and column

Response of Water Table and Capillary Fringe

At the start of the experiment, the verticai extent of
the water-capillary fringe was 23cm (9.06 inch) and the
tops of the fringe and the water table were at heights of 77
(2031 inch)and S4c¢m (21 26.1inch) from the hottom of the

(8} N

Dispersed Ovd and
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Figure 9. Plumes of oil and oil constituents: (A) before and
(B) after installation of monitoring well.

column, respectively (Figure 7a). The oil-water interface,
once formed at the top of the capillary fringe. remained at
that elevation throughout the experiment (Figures 7b to
7e). However, the vertical extent of the water capillary
fringe decreased from 23 10 Ocm (9.06 to 0 inch) dunng
the experiment due to a nsing water table. The initial rise
in the water table was likely caused by small quanuties of
water displaced by oil from the lower region of the funicu-
lar zone after the outflow tube was closed. This contribu-
tion is not believed to be significant in view of the fact that
the oil-water interface was mnitially formed at the top of
the water capillary fringe. However. the water-table nse
and the decrease in the thickness of the capillany fringe
(see Table 1) occurred in response to a corresponding
increase in the o1l hcad in the medium. At each stage in
the experiment. the increase in the thickness of the a1l in
the well 1s balanced by a rise in the water table.

These experimental observations have provided some
insights 1nto potential responses of the capillary fringe
and water table under an active leak. However. tactors
such as the rate of leak. fluctuating water-table conditions.
and spatial vanation in the hydrogeologic conditions at
the site could significantly influence the response of the
systemn to the ol leak

Enhanced Aquifer Contamination
A typical schematic for oil distribution 1n a homo-
geneous sandy aguifer 1v shown in Figure 9a (Schwille

1967, Schwille 1984, Abdul 19871
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Contamination
watic for oil distribution 1n a homeo-
fer is shown in Figure 9a (Schwille

1967, Schwille 1984, Abdul 1987). The free-oil zone takes
the shape of a “pancake” having a small vertical extent
compared to its horizontal extent. For smail leaks. the
hydrocarbon source for potential aquifer contaminauon
is along the oil-water interface in the water capillary
fringe.

When a monitoring well is placed through the zone of
free vil. enhanced vertical contamination can occur dunng
drilhng. In additton. because oil in the monitoring well
can fall several feet below the base of the pancake, the o1l
column in the well can provide a vertical source ot con-
raminants (Figure 9b). Such vertical spread would be
enhanced by fluctuations of the water table.

Careful determination of the depths of coring, dnlling,
and well installation would minimize the potential of
further spreading the contaminants by these activitic: .

Conclusion

Monitoring wells are routinely used to detect petro-
leum products leaking from underground storage tanks
and to delineate the zones of soil and aquifer systems
contaminated by these products. Also, measurements in
monitoring wells are often used 1o estimate the amount of
product in the contaminated soil aquifer system. Both
theoretical analysis and laboratory column experiments
with sandy «quifer material and diesel fuel have shown
:hat monitoring wells alone are not adequate for the
aforementioned applicat :ns.
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